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Abstract. We consider the dynamics of the center-of-mass of an ultracold excited atomic oscillator in the
vicinity of a dielectric microsphere. The specific parameters of microsphere (dielectric constant, radius)
allowing for atom’s quasi orbital motion, with an arbitrary orientation of dipole momentum, are analyzed.
We discuss the conditions for which excited atoms like alkalis, alkaline earths or noble gases could form a
kind of atom-microsphere exciplex with different orbital momenta.

PACS. 32.80.Lg Mechanical effects of light on atoms, molecules, and ions – 34.50.Dy Interactions
of atoms, molecules, and their ions with surfaces; photon and electron emission; neutralization
of ions – 42.25.Gy Edge and boundary effects; reflection and refraction

An interesting example of atomic motion around a dielec-
tric microsphere (“atom galleries”) was proposed in [1].
This motion is possible for a three-level atom near a di-
electric microsphere with external two-frequency excita-
tion. The atom motion in this case is similar to the motion
of the Earth around the Sun.

In the present paper, we consider another type of
quasi-orbital motion, without external fields. This quasi-
orbital motion, driven by Whispering Gallery Modes
(WGM) vacuum field, is possible for a two-level excited
atom, with arbitrary orientation of dipole momentum,
near a dielectric microsphere [2]. The geometry of the
problem is given in Figure 1.

The existence of a quasi-orbital motion is determined
by the topology of atom-microsphere interaction potential,
which is proportional to level shift or frequency shift. That
is why one should find the conditions which provide the
necessary space topology of frequency shifts.

Let us consider an atom with fixed orientation of dipole
momentum. The quasi-orbital motion of such an atom
in radial direction is quite possible. Indeed, as shown in
[2–4], the dependence of atomic frequency shifts on the
distance from microsphere surface exhibits the character-
istic oscillations due to interaction with freely-propagating
radiation reflected by microsphere. Consequently this de-
pendence has minima, which are suitable for quasi-orbital
motion.
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Fig. 1. Geometry of the problem.

However such a simple approach cannot be used to
trap an atomic oscillator with an arbitrary orientation of
dipole momentum. This is due to the fact that the en-
ergy minima positions for different dipole orientations do
not coincide. Moreover, the situation appears more com-
plicated when we take into account the center-of-mass mo-
tion of the atomic oscillator. The reason is that a radially
oscillating atom acquires tangential components when or-
biting around the microsphere surface, and vice versa due
to pure kinematic reasons. Hence, if one tunes the pa-
rameters for radial dipole orientation, the atom revolution
along one quarter of circle changes the dipole orientation
to a tangential one for which, in general, the potential
energy minimum is not located at the same distance.
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A simpler situation occurs when the dipole orientation
is perpendicular to the plane of rotation. In this case the
dipole orientation is always tangential.

That is why the potential energy of excited atom
should have simultaneous minimum for arbitrary orien-
tation of dipole momentum, to allow for a stable quasi-
orbital motion around the dielectric microsphere. In the
present paper, within classical as well as quantum me-
chanical approaches, we will show that such a topology
can be created by fine tuning of microsphere radius and
dielectric constant.

The method of calculation of frequency shift within
classical approach was considered in [2] and the perturba-
tive expression for frequency shift of atomic dipole with
arbitrary orientation has the form:

see equation (1) above.

Here, ω0, γ0 are free-space radiation frequency and line
width respectively; ψ is the dipole orientation angle (ψ = 0
corresponds to radial orientation); jn and hn are spherical
Bessel functions [5]; z′ = kr.

All information about microsphere optical properties
is contained in qn and pn – Mie reflection coefficients [6]:
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In equations (2, 3) and elsewhere, z1 =
√
εka; z2 = ka, (a:

microsphere radius, k: wavenumber in free space).
The quantum mechanical perturbative expression for

the frequency shift differs from equation (1) by a non res-
onant term, which is of importance only in close vicinity
to microsphere surface [7]. This quantum mechanical ad-
dendum is not likely to influence our result substantially.
This influence will be considered elsewhere.

Here we apply equation (1) to find the parameters for
quasi-orbital motion of an atomic oscillator with arbitrary
orientation of dipole momentum. To do this, we need to
consider microspheres with high dielectric constant in the
optical region. Microspheres with large dielectric constant
are necessary to reduce microsphere radius and conse-
quently the period of atom revolution around microsphere.
Here for definiteness, we consider the case of microsphere
made of diamond with ε = 6.01.

Fig. 2. Relative frequency shift (ω − ω0)/γ0 as a function of
the position (r/a) of the radially (solid line) and tangentially
(dashed line) oscillating atomic dipole near microsphere. Gen-
eral parameter case (ka = 10.1 and ε = 6).

Figure 2 shows the typical dependence of frequency
shift for general system parameters. From this figure one
can easily see that, for arbitrary orientations, a quasi-
orbital motion is possible very close to the surface due to
pure electrostatic (van der Waals-type) forces. However,
it is very difficult to put atoms into this region, because
of the inevitable capture of atom by microsphere, due to
short range attraction singularity. Subsequently we will
not consider this trivial case.

As for the case of large distances, the potential mini-
mum of a radially oriented dipole (at r = 1.4a) does not
coincide with the positions of the potential minima of a
tangentially oriented dipole (at r = 1.45a, 1.8a). Hence,
the quasi-orbital motion of radially oriented dipole does
not result in a quasi-orbital motion of tangentially ori-
ented dipole. Besides, the arbitrary choice of microsphere
parameters does not provide the deepest well.

The difficulty in getting quasi-orbital motion is due
to the characteristic features of interaction of microsphere
eigenmodes with atomic dipole with different orientations.
Indeed, according to equation (1), the radially oriented
dipole (ψ = 0) interacts only with transverse magnetic,
TM, modes (Mie coefficients qn), while the tangentially
oriented dipole (ψ = π/2) interacts with TM modes as
well as transverse electric (TE) modes (Mie coefficients
pn). The interaction of tangential dipole with TM-modes
makes difficult the determination of the capture parame-
ters because the latter interaction contains derivatives of
Bessel functions. If this interaction were absent, the simul-
taneous maximization of pn and qn for some n should give
access to a quasi-orbital atomic motion.
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Fig. 3. Relative frequency shift (ω−ω0)/γ0 (a) and line width
γ/γ0 (b) as a function of the position (r/a) of the radially (solid
line) and tangentially (dashed line) oscillating atomic dipole
near microsphere. Capture parameter case (ka = 10.488 95
and ε = 6.01). The dashed-dotted lines show the orientation-
averaged frequency shift and linewidth.

Nevertheless the direct numerical simulation allows us
to find a number of specific (non resonant!) values of mi-
crosphere radius at which the positions of radial and tan-
gential wells will be close.

In Figure 3 one can see a special situation (ka =
(ka)∗ = 10.488 95, ε =6.01) which results in a quasi-orbital
motion of the atom near r = 1.125a.

The dependence of related Mie reflection coefficients
(Eqs. (2, 3)) and atomic oscillator line on ka is shown

in Figure 4. Let us identify the whispering gallery modes
(TM and TE) by the triple number (P, n,m), where P
characterizes the number of zeros of jn(

√
εkr) inside the

microsphere (P = 1 – no zero, P = 2 – one zero, etc.);
n and m characterize the orbital and azimuthal quantum
numbers respectively. One may see from Figure 4 that the
atomic oscillator frequency is out of strong WGM reso-
nances, and the perturbation theory is valid in this region.
The TM (1, 20, 20) resonance ensures the potential barrier
between atom and microsphere surface.

Let us consider the properties of this quasi-orbital mo-
tion in more detail (Fig. 3). In the absence of orbital mo-
tion of atom, the peak energy of atom is determined by
the well depth only. For a radial dipole orientation, we
have

Emax ≈ 0.2~γ0 (4)

while for a tangential dipole

Emax ≈ 0.3~γ0. (5)

The case of orbital motion is more interesting. Below we
will show that, in this case, it is possible to capture atom
with larger energy.

In the present paper, we will perform a preliminary
investigation of quasi-orbital motion of excited atom. To
do this, we will use the spherically symmetric expression
for the potential. This expression is a result of averaging
of equation (1) over atom trajectory around microsphere.
Averaging over trajectory is equivalent to averaging over
dipole orientation which can be performed easily within
the framework of equation (1).

For the case of dipole momentum lying in the plane of
rotation, the spherically symmetric expression for effective
potential becomes:

see equation (6) above.

Expression (6) is shown in Figure 3 by dashed-dotted
line. The radial motion of atom is described by the po-
tential [8]:

U(r) = Ucf(r) + Ueff (r) =
M2

2mr2
+ Ueff (r). (7)

Here M = mV r is the orbital momentum (V : azimuthal
velocity, m: atom mass).

The dependence of potential (Eq. (7)) on the orbital
momentum is shown in Figure 5.

The peak orbital momentum (and azimuthal velocity)
is defined by the condition of disappearance of the mini-
mum of equation (7). In our case (ka = (ka)∗ =10.48895,
ε = 6.01), we have

M2

2ma2~γ0
= ξ∗ ≈ 1.5. (8)
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Table 1. Fraction of revolution for some commonly used atoms.

Atom Mass Transition λ (nm) τ (ns) Fraction of revolution

ε = 6 ε = 50

Mg 24 21S0−23P1 457.1 4.6 ms 1 4.8

Ca 40 31S0−33P1 657.5 0.4 ms 0.2 0.8

Rb 85 5S1/2−5P3/2 780.0 26.5 0.001 0.004

Xe 131 6s[3/2]2−6p[5/2]3 881.9 34 0.001 0.003

Cs 133 6S1/2−6P3/2 852.1 30 0.001 0.003

Fig. 4. Dependence of absolute values of the related TM and
TE Mie coefficients on ka. The atomic oscillator line for capture
case is shown by filled Lorenz curve (ω0/γ0 = 105).

Fig. 5. Dependence of radial potential on orbital momentum
(M2/2ma2~γ0 = ξ; ξ = 0, 0.5, 1, 1.5).

In addition, the disappearance of capture takes place at
r∗ ≈ 1.15a. One can see easily that it is possible to capture
an atom with

Emax =
ξ∗

(r∗/a)2
~γ0 ≈ 1.1~γ0. (9)

This is a significant increase in comparison with the case
of absence of azimuthal motion (see Eqs. (4, 5)).

From equation (8), it is easy to find the atom velocity
and rotation period:

V ≈

√
2ξ∗

r̃∗2
~γ0

m
, T = 2π

√
r̃∗4

2ξ∗
ma2

~γ0
(10)

where r̃∗ = r∗/a, dimensionless radial coordinate of the
potential well minimum. To form a circular orbit, the rota-
tion period should be comparable with excited atom life-
time, i.e.

T ∼ 1/γ0 (11)

or

2π

√
r̃∗4

2ξ∗
mγ0a2

~
∼ 1. (12)

It is easy to see that, for sufficiently small transition line
width and microsphere radius, this condition always holds.

Note that the microsphere radius cannot be made ar-
bitrarily small, because it is connected with the optical
wavelength at which the large dielectric constant exists.
Taking this remark into account one can rewrite (12) in
the form: √

r̃∗4(ka)∗2

2ξ∗
mγ0λ2

~
∼ 1 (13)

where (ka)∗=10.48895 – a value derived above for the
relation between microsphere radius and free radiation
wavelength. Substituting the numbers we obtain the rota-
tion condition which depends only on excited atom char-
acteristics:

8

√
mγ0λ2

~
∼ 1. (14)

Table 1 shows the number of revolutions for some atomic
oscillators (see, for example, [9]) in case under considera-
tion. The analysis of this table shows that the only atom
which can perform full revolution is Mg. Note the orbital
velocity in this case is about

V ≈

√
~γ0

m
∼ 1 mm/s. (15)
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Above, the principle of capture of an excited atom with
arbitrary orientation of dipole momentum near dielectric
microsphere was demonstrated. Moreover some atomic
dipoles (e.g., Mg) can rotate around microsphere.

Up to now we considered purely classical dynamics of
the center of mass of the atomic dipole. However if we
rewrite equation (13) in the form:

2π

√
r̃∗4

2ξ∗
ma2γ0

~
= 2π

a

λ–

√
r̃∗6

4ξ∗2
≈ π

a

λ–
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where λ– = ~
mV =

√
r̃∗2

2ξ∗
~
mγ0

– de Broglie wavelength,

we easily see that in our case the rotational motion of
the atom is quantum mechanical and new interesting pure
quantum effects can occur.

To consider the quantum dynamics of the center-of-
mass (CM) of the atomic dipole in potential (1, 6), it
is necessary to solve the appropriate Schrödinger equa-
tion. Because of the spherical symmetry of the potential,
a straightforward separation of variables in spherical co-
ordinate system allows us to reduce the problem to 1D
radial eigenvalue problem:[

−
~2

2m

(
∂2

∂r2
+
`(`+ 1)

r2

)
+ Ueff (r)

]
ϕ = Eϕ. (17)

ϕ(0) = ϕ(∞) = 0. (18)

Here ` is the orbital quantum number.
Strictly speaking, due to the singularity of potential

near dielectric microsphere surface, (Ueff ∝ 1/(r − a)3),
this problem does not have solution. So we can discuss
only quasistationary states. To find the quasistationary
states, one should use the boundary condition

ϕ(rmin) = ϕ(rmax) = 0, (19)

instead of equation (18), and then check the localization of
wavefunctions obtained. Here, rmin, rmax are respectively
the minimal and maximal values of radius characterizing
the potential well.

Before solving equations (17, 19), one should note
that this problem has no solution for an arbitrary atomic
dipole. The point is that there are no bound states in a
shallow enough well.

In the present case, the rotation of Mg atomic dipole
is due to the long lifetime of the excited state, implying
a small well depth, which is proportional to ~γ0. Simple
estimations using uncertainty principle show that there
are no bound states in that case.

Indeed if we use, instead of our well, one with infinite
walls at rmin and rmax , it is easy to estimate the energy
of the CM ground state in the potential well:

Emin =
π2~2

2m(rmax − rmin)2
· (20)

In our case rmin − rmax ≈ a/3, so

Emin

~γ0
=

9π2~
2ma2γ0

· (21)

Fig. 6. Energy levels and wavefunctions for center-of-mass mo-
tion of Rb atomic oscillator (ka = 10.488 95, ε = 6.01; averaged
potential; ` = 0, rmin = 1.03, rmax = 1.3)

For Mg, this yields Emin/~γ0 ≈ 928, while at the same
time the total depth of our potential well, (Eq. (4)), is
Emax/~γ0 ≈ 0.2! This clearly prevents the existence of a
bound quantum-mechanical state.

Different situations take place for the other atomic os-
cillators considered in Table 1. For the Rb resonance state,
the energy levels and wavefunctions of the Rb center-
of-mass motion (for a random orientation of the dipole
momentum) are shown in Figure 6. This figure shows
that CM wavefunctions with ` = 0 are expected to be
well-localized. So the probability for tunneling to surface
should be small. States with ` 6= 0 are also well-localized,
because the centrifugal energy is small in comparison with
the energies of low-lying levels. The same situation takes
place for all atomic oscillators meeting the condition:

mγλ2

~
> 3× 104. (22)

This condition ensures the existence of two well-localized
states for a tangential orientation of the atomic dipole
at least. Note that this orientation is less favorable for
capture (see Fig. 3).

Let us now analyze the lifetime of such a system. From
Figure 3b one can see that the orientation-averaged radia-
tion line width in the case under consideration is γ/γ0 ≈ 2,
while the potential well depth is ∆ω/γ0 ≈ 0.2. The com-
parison of these values shows that, for ε = 6, the radiation
line width exceeds substantially the potential well depth,
and consequently one cannot speak of atom-microsphere
exciplex, or orbital motion around the microsphere.

Nevertheless the main question remains: is it possible
to predict atom’s quasi orbital motion? In principle, the
answer is yes if we consider a microsphere with anoma-
lously large refraction indices. For example, for a micro-
sphere with hypothetical index n ≈ 7 (ε = 50) (semi-
conductors in far IR range?) and with radius governed
by ka =15.4613 (near the TM (1, 100, 100) Whisper-
ing Gallery Mode), the potential well depth is three times
larger than the line width. The corresponding variations of
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(a)

(b)

Fig. 7. Relative frequency shift (ω−ω0)/γ0 (a) and linewidth
γ/γ0 (b) as a function of the position (r/a) of the radially (solid
line) and tangentially (dashed line) oscillating atomic dipole
near microsphere (ka = 15.46 and ε = 50). The dashed-dotted
line shows the averaged frequency shift, and linewidth.

potential energy and line width for different orientations
of the atomic dipole are shown in Figure 7.

A classical analysis of this potential well reveals a 5 fold
increase of the revolution number for Mg (see Tab. 1, ε =
50 column). However bound quantum levels do not arise
yet for Mg.

On the other hand, with the same parameters, for al-
lowed transitions, a number of well-localized energy levels
exists in the potential well. The four lower levels and cor-
responding wave functions for Rb are shown in Figure 8.

In conclusion, we have analyzed the existence of a pos-
sible quasi orbital motion of an excited atom near a dielec-
tric microsphere. A semi-classical analysis of this problem
shows the possibility of a quasi orbital motion of an excited

1 1.02 1.04 1.06 1.08 1.1
-3

-2

-1

0

1

2

3

 r/a

∆
/γ

   0

Fig. 8. Energy levels and wavefunctions for the center-of-mass
motion of Rb atomic oscillator (ka = 15.46 and ε = 50; aver-
aged potential, ` = 0).

atom near diamond microsphere. However, this possibility
vanishes under quantum mechanical considerations.

In a quantum mechanical approach, only microspheres
with a very high dielectric constant (ε = 50) would allow
for a potential well deep enough in comparison with the
line width, thus making possible a quasi orbital motion
for some excited atoms. In this view, the best compromise
seems to be the inter combination line of Ca.
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